The Value Proposition for Chain Store Predictive Analytics

How many times have you seen a “Value Proposition” slide with statements like these?

  1. “We are experts in “best practices” in chain store real estate analytics and we can help you join the 21st century.”
  2. “Our scientists have developed proprietary algorithms and methods that produce the most accurate predictive models possible.”
  3. “Our technology platform will deliver user-friendly maps, reports, and sales forecasts to everyone in the enterprise who wants them; with a 90 day deployment.”

Why wouldn’t these value propositions of “better” and “faster” be compelling for everyone?

In theory, they would.  But every chain store company has a point of view about its real estate program, and if vendors don’t understand it, they will never sell them anything…that works!

Let’s flip this around and look at it from the viewpoint of the chain store real estate executives.  They will invest in predictive analytics when they see the value of a proposition, not the proposition of a value. 

Most companies have a “committee meeting” where real estate deals are considered and approved.  There is usually a representative from each of the departments that has a stake in the quality of a new store, which is all of them:  finance, merchandising, marketing, operations, and of course, real estate.  Do they lose sleep over “best practices?”  Are they fascinated with mathematical models?  Do they enjoy rolling out new software applications? NO, NO, NO!  They didn’t become senior executives by contemplating their navels and fantasizing about perfection.  They know how to get stuff done. Why do they even want to talk to a vendor who offers chain store predictive analytics?  

There are several possible reasons.  First, the end game is getting and satisfying customers.  The real estate strategy and program must clearly “map” to this goal.  That means that a store, restaurant, or service center should:

  • Be Convenient
  • Have what the customer wants
  • Make it fun and easy to fulfill their needs

Convenience is based on the location of the store, which includes what it’s near, its visibility, and its accessibility.  This is the focus of the real estate decision, and the profitability of a store is heavily dependent on location quality.  Anything that helps the chain acquire better locations is worth consideration, whether it’s data, software, training or predictive analytics.  Chances are that some combination of these things can contribute to better locations. The challenge is assessing the needs of the organization and designing a plan that blazes a clear path from the current situation to a desired state that increases the number of happy customers and drives profit.

At any given point in time, the executives in a company will have the ability to visualize a better state that is achievable from where they are.  The plan must be manageable over a one to two year period, because business must continue while changes are implemented.

The trick is to foster a dialogue that leads to a needs assessment, a game plan, and a set of expectations that represent a compelling return on investment.

What are the ingredients in such a plan?  It varies dramatically from company to company.  Here are some factors that influence the best approach to good real estate decisions:

  1. Breadth of customer profile.  If 80% of your sales come from girls between the ages of 14 and 18, you need to make sure that the trade area of a store has enough teenage girls.  If your customer could be anyone, successful stores might have many profiles, and the analytics required to figure this out are more tedious and complex.
  2. Size of the store.  If you are opening 50,000 square foot stores, you will be investing more capital, opening fewer units, and evaluating fewer opportunities, so you will be able to justify more field research.  This means that you don’t need to rely as much on screening tools and complex multi-user systems that are designed for fast decisions.  If you are opening 1,200 square foot stores, it’s about screening out the dog locations to allow enough time for the ones that deserve serious consideration.
  3. Format of the store.  Predictive models for enclosed malls are very different from models for open-air centers or street retail.  Malls are mostly about the quality and tenant mix of the mall, but open-air centers require a careful analysis of the trade area demographics and competitive landscape.
  4. Decision styles of senior executives.  Some companies place greater emphasis on quantitative analysis than others, and you can’t easily change this.  There are many winning combinations of people and tools, art and science, book smart and street smart.

Each chain store company has limited time and money to invest in store location decisions.  Predictive analytics that make a difference will be discovered through a dialogue among experts who know the business and the tools and are committed to working together to find the unique value proposition that maximizes ROI.

Predictive analytics can help increase average unit volumes significantly over time.  Here are some of the ways predictive analytics empower decision-makers to see more clearly:

  • Provide access to more facts to support judgments
  • Reveal patterns in the facts that create insights
  • Simulate decisions before actually executing them
  • Establish a common “language” of factors important to decision-making
  • Benchmarking with a checklist of factors to consider before making decisions
  • Visualization of facts and patterns as a catalyst for interactive exploration and discussion among decision-makers (e.g. “paperless” real estate committee meetings)
  • Maintaining an objective record of decision logic for learning and improvement

These are propositions of value, and when applied to a specific company, they may become part of a value proposition!

The Whole World’s Watching

We’ve been hearing about global expansion by  chain store retailers and restaurants for years.  Most people probably think that in many parts of the world this is an “imperialistic” initiative by US and European companies.

My blog statistics indicate that there’s global interest in chain store development from local people. Continue reading

Climbing the Stairway to Wisdom

There’s a broker who’s sure that all sites turn to gold
And she’s selling the stairway to heaven.
When she gets there she knows, if the sites are all sold
There’s a vacancy coming to save her.
And she’s selling the stairway to heaven. 

– Led Zeppelin (adapted)

One of the popular metaphors for decision-making in the information age is the “Knowledge Hierarchy.”  It is based on the idea that we start with raw data and gradually process it through stages until it becomes wisdom suitable for making good choices.

Some people apply this to professional development over the career of a chain store real estate executive.  When you’re young, you simply see data, but as you get more experience and insight, you are able to use your wisdom to evaluate sites.

The fact is, each site must be evaluated through a process that starts with raw data that is enhanced with verification, context, and benchmarks until it is ready for the application of human wisdom. 

The human brain uses pattern recognition and analogies to analyze complex decisions.  This is why “analog stores” are popular in site selection.  If we can find existing stores that are similar to a proposed location, we can adjust the details and apply our knowledge of its sales performance to the new site. Continue reading

What Gets Measured Gets Done

Everyone knows the value proposition for chain store real estate research:

“If you avoid closing one or two stores it pays for itself.”

So why are people so hesitant to invest in analysts, predictive analytics, and information systems to support better real estate planning and site selection?

I’ve been asking this question for nearly 20 years, and I think I’m finally beginning to see the answer.

It’s about measurement.

Here’s how the argument goes:

Summary (simplified):  If we invest in better research, we can use a predictive model to estimate sales performance for proposed sites.  If we know the population and income of the trade area, the distance to our competitors, and the quality of the site, we can use the weighting factors in the model to calculate the sales potential.  We’ve heard that it’s possible to have a model where the estimate will be +/-  20% reliable at least 80% of the time.  In the past we have only been +/- 20% correct 65% of the time.

Therefore, the avoidance of bad stores alone will more than cover the investment in people and tools to build and use the predictive model. Continue reading

Here We Go Again

The economy is showing signs of perking up.

Although retail store closings are expected to continue at a strong pace in 2012 (see http://www.forbes.com/sites/erikamorphy/2011/12/31/2012-another-bad-year-for-store-closings/), many retailers and restaurants are staffing up for growth and looking for deals.

Is this the pregame warm-up for the next cycle of boom and bust?  Or maybe, just maybe, there’s a smarter, more disciplined group of decision-makers running the chain store companies today.

As I mentioned in an earlier post, the chain store industry doesn’t have well-defined best practices in real estate planning and site selection.  In order to begin a dialog on this subject I have created a “rubric” that describes various practices at different levels of effectiveness that can be used as a self-assessment tool for people in the chain store industry (click here for the Best Practices Rubric).

There are only nine items on the rubric, so you should be able to complete it in 5-10 minutes unless it causes you to think hard about what you’re doing, which would be a good thing!  Simply circle the description of the practice that best describes your business and when you’re done, add up the points as indicated at the top of each column.

The total points will range from 9 to 36, assuming you complete the rubric.  Based on my experience and exposure to chain store companies over the past 18 years, I would interpret the scores as follows:

0-15 points:  If you are still in business, it’s because you have smart, street-wise people              and probably aren’t doing very many deals each year.

16-20 points:  You are about average for the industry, which is OK if you don’t mind being average.  However, you won’t be able to stay average without improving, given the the struggling economy, growth of “omni-channel retailing” and the new breed of tech-savvy competitors.

21-27 points:  You know that you’re doing a good job because you have made a conscious decision to create good decision-making processes supported by good people and good tools.  You are already thinking about how to stay ahead of the game and work smart, not just hard.

28-36 points:  The business practices of your company are truly “best practices” and you represent the elite of the industry.  You might be reluctant to share what you do because you know that you have a serious competitive advantage.  However, you will probably talk about it anyway because of the positive energy that market leaders generate with employees, investors, customers, and partners.  We thank you for your leadership!

I look forward to your public and private comments on the rubric and the general subject of best practices in real estate planning and site selection.

Do We Have Industry Standard Practices in Retail Real Estate?

Why does any industry have standard practices?  Every business is different, even within an industry, so what’s the point of trying to standardize?

Industry standard practices are a lot like the rules in a game.  They provide a systematic, consistent, and proven framework within which the players develop their strategies and exercise their skills.  Having rules doesn’t make you a winner, but they make it possible to become a winner by promoting the following competitive strengths: Continue reading

Freedom through Structure: Optimizing Chain Store Real Estate Processes

You hear the complaints all the time.

“The field people only react to the deals that the brokers present to them.  They don’t take the market planners seriously when we target certain trade areas.”

“The analysts (aka “geeks” or “deal killers”) think they know everything because they have mapping and statistics programs.  They have no idea how the real world works.”

“I can’t open enough stores because the paperwork takes forever.  It’s easier to get a PhD than get a deal through our approval process.”

Is this just the way it has to be?  Dealmakers vs. analysts? People who drive sales and people who prevent sales?  Entrepreneurs vs. bureaucrats? Continue reading

Analytics vs Modeling: “Democratizing” Decision Support

Mistakes are expensive.  Everyone wants a model to help them avoid mistakes and repeat successes.

We want a good business model that provides a framework for success.  If the business model works and we stick with it, we will make money.

In the chain store business, we want to make good site selection decisions.  Avoid bad real estate; pay the right price for good real estate.  We want a sales forecasting model that will help us estimate the top line number to plug into our pro forma operating model for a store (which is based on our business model, of course). Continue reading

Will “Big Data” lead to “Big Answers” for Chain Store Operators?

One of the hottest topics in business analytics today is “big data,” defined by Wikipedia as “a term applied to data sets whose size is beyond the ability of commonly used software tools to capture, manage, and process the data within a tolerable elapsed time.”

How big is “big data?”

Last year, consumers and businesses around the world are estimated to have stored more than 13 exabytes of information on PCs, laptops and other devices — the equivalent of more than 52,000 times the information housed in the Library of Congress. An exabyte is 1 followed by 18 zeros, or a billion gigabytes.  And the amount of data stored in such “technological memories” is growing 25 percent a year, said Martin Hilbert, a researcher at the University of Southern California.  These were some of the estimates shared at the The Economist Big Data Conference last June in Santa Clara, CA. (for complete story see http://pittsburghlive.com/x/pittsburghtrib/business/s_745039.html). Continue reading

Effective Training: If It Was Easy Everyone Would Be Doing It

I have become obsessed with the realization that chain store operators are leaving billions of dollars of sales on the table by failing to properly train and develop their talent in the real estate teams (total sales of US retail establishments is around $4 trillion according to the 2007 Economic Census published in 2009).

Why is this?  Laziness?  Ignorance?  I don’t think so.  Some of the most clever AND street-wise people I’ve ever met are senior executives in chain store companies.  I think that the training challenge is relatively new and requires adapting to new market conditions.  It’s the natural evolution of the chain store business.  Sears built an empire with selection (“Sears Has Everything”).  Wal-Mart revolutionized retailing with their supply chain management.  Apple has seemingly cornered the market on “cool” and “easy.”  Here are some of the driving factors that have increased the priority of training from low-moderate to high: Continue reading