If You Ask The Wrong Question You Will Get The Wrong Answer

“I need to get more scientific about site selection.  What software should I buy?”

Given the massive closings of stores since 2008, many chain store executives are asking this question today in order to avoid a repeat performance as they start growing again.

The problem is, it’s the wrong question!

About 20 years ago it dawned on me that most real estate investment decisions were made using gut feel fueled by the desire to close deals, often in the face of contrary evidence.  For those old enough to remember, this was in the wake of the late 1980’s Savings and Loan meltdown, which seemed like a pretty serious crash until the Subprime Mortgage debacle of 2008 (estimated cost $7.7 trillion versus $1.5 trillion for the S&L Crisis).

I set out to create software that would help decision-makers gain fast access to market knowledge and insights that would increase the financial performance of their investments (this seemed easier than making software that would reduce greed on Wall Street or incompetence in government).

It took me another 10 years to realize that I had underestimated the importance of the decision-making process itself!  The best tool is of no value in the wrong hands.  The selection of research and predictive analytics tools is actually the LAST step in the quest for better real estate decisions, which should follow these steps:

  1. Design the objectives and processes for decision-making
  2. Find the right people for the team
  3. Acquire the research and predictive analytics tools to support  the people and processes

Each of these steps is disruptive to an organization.  However, buying software is probably the least disruptive, so that’s where many companies choose to start! Gary Cokins, a veteran in the area of analytics and organizational change, says this:

“Organizations seem hesitant to adopt analytics. Is this due to evaluation paralysis or brain freeze? Most organizations make the mistake of believing that applying analytics is 90 percent math and 10 percent organizational change management with employee behavior alteration. In reality it is the other way around; it is more likely 5 percent math and 95 percent about people.” (source:  http://www.informs.org/ORMS-Today/Public-Articles/February-Volume-39-Number-1/Obstacle-course-for-analytics)

This explains why it is difficult to sell analytics, and it’s interesting to see how consultants and software vendors have adapted.  Here are some examples:

  1. If a company is not willing to significantly change its process, they will not get much value from predictive analytics.  Therefore, they won’t want to pay much for it because the ROI will not be sufficient.Hence, some vendors optimize their product offering to be inexpensive, which usually means reducing the quality of the modeling services and the software deliverable that contains the model.Unfortunately, there is no such thing as a cheap model that is also reliable.
  2. Some companies do not have the expertise in-house (at any level) to understand predictive analytics, which includes data quality, modeling methods, and the interpretation of results.In order to “meet the customers where they are,” some vendors create “black box” models with stunning graphics and user interfaces that insulate the customer from the messy, elusive realities of the complex retail marketplace.

    Although video games can be incredibly realistic, they are still not reality.

Everyone wants a quick, easy solution.  If you try to lose weight with diet pills, you’re not really dieting.  If you want to be more scientific about site selection, take the time to look at your decision-making processes, staffing, and finally, your predictive analytics tools.  Depending on the number of stores you are opening and the size of the investment, you might choose one of three approaches to making better real estate investment decisions:

  1. Hire a consulting firm to build a model and provide an overall market strategy and an analysis of each site that you are seriously considering.  If your level of activity is not high, this might be more cost-effective than creating an in-house staff and equipping them with the tools.
  2. Develop an in-house research team that can support the decision-making process, and provide them with models and tools built by outside firms who are experts in this highly specialized discipline.
  3. Start with outsourcing and gradually build an in-house capability over time as the economies of scale justify the investment in the fixed overhead of people and tools.

Mapping and reporting tools are very good and affordable today, and every company should have the ability to analyze markets and sites with these visualization tools and generate descriptive reports.

However, predictive analytics require much more expertise to build and use.  If you aren’t ready to change the way you work, and invest in proven modeling methods, save your money for when the time is right!

The Value Proposition for Chain Store Predictive Analytics

How many times have you seen a “Value Proposition” slide with statements like these?

  1. “We are experts in “best practices” in chain store real estate analytics and we can help you join the 21st century.”
  2. “Our scientists have developed proprietary algorithms and methods that produce the most accurate predictive models possible.”
  3. “Our technology platform will deliver user-friendly maps, reports, and sales forecasts to everyone in the enterprise who wants them; with a 90 day deployment.”

Why wouldn’t these value propositions of “better” and “faster” be compelling for everyone?

In theory, they would.  But every chain store company has a point of view about its real estate program, and if vendors don’t understand it, they will never sell them anything…that works!

Let’s flip this around and look at it from the viewpoint of the chain store real estate executives.  They will invest in predictive analytics when they see the value of a proposition, not the proposition of a value. 

Most companies have a “committee meeting” where real estate deals are considered and approved.  There is usually a representative from each of the departments that has a stake in the quality of a new store, which is all of them:  finance, merchandising, marketing, operations, and of course, real estate.  Do they lose sleep over “best practices?”  Are they fascinated with mathematical models?  Do they enjoy rolling out new software applications? NO, NO, NO!  They didn’t become senior executives by contemplating their navels and fantasizing about perfection.  They know how to get stuff done. Why do they even want to talk to a vendor who offers chain store predictive analytics?  

There are several possible reasons.  First, the end game is getting and satisfying customers.  The real estate strategy and program must clearly “map” to this goal.  That means that a store, restaurant, or service center should:

  • Be Convenient
  • Have what the customer wants
  • Make it fun and easy to fulfill their needs

Convenience is based on the location of the store, which includes what it’s near, its visibility, and its accessibility.  This is the focus of the real estate decision, and the profitability of a store is heavily dependent on location quality.  Anything that helps the chain acquire better locations is worth consideration, whether it’s data, software, training or predictive analytics.  Chances are that some combination of these things can contribute to better locations. The challenge is assessing the needs of the organization and designing a plan that blazes a clear path from the current situation to a desired state that increases the number of happy customers and drives profit.

At any given point in time, the executives in a company will have the ability to visualize a better state that is achievable from where they are.  The plan must be manageable over a one to two year period, because business must continue while changes are implemented.

The trick is to foster a dialogue that leads to a needs assessment, a game plan, and a set of expectations that represent a compelling return on investment.

What are the ingredients in such a plan?  It varies dramatically from company to company.  Here are some factors that influence the best approach to good real estate decisions:

  1. Breadth of customer profile.  If 80% of your sales come from girls between the ages of 14 and 18, you need to make sure that the trade area of a store has enough teenage girls.  If your customer could be anyone, successful stores might have many profiles, and the analytics required to figure this out are more tedious and complex.
  2. Size of the store.  If you are opening 50,000 square foot stores, you will be investing more capital, opening fewer units, and evaluating fewer opportunities, so you will be able to justify more field research.  This means that you don’t need to rely as much on screening tools and complex multi-user systems that are designed for fast decisions.  If you are opening 1,200 square foot stores, it’s about screening out the dog locations to allow enough time for the ones that deserve serious consideration.
  3. Format of the store.  Predictive models for enclosed malls are very different from models for open-air centers or street retail.  Malls are mostly about the quality and tenant mix of the mall, but open-air centers require a careful analysis of the trade area demographics and competitive landscape.
  4. Decision styles of senior executives.  Some companies place greater emphasis on quantitative analysis than others, and you can’t easily change this.  There are many winning combinations of people and tools, art and science, book smart and street smart.

Each chain store company has limited time and money to invest in store location decisions.  Predictive analytics that make a difference will be discovered through a dialogue among experts who know the business and the tools and are committed to working together to find the unique value proposition that maximizes ROI.

Predictive analytics can help increase average unit volumes significantly over time.  Here are some of the ways predictive analytics empower decision-makers to see more clearly:

  • Provide access to more facts to support judgments
  • Reveal patterns in the facts that create insights
  • Simulate decisions before actually executing them
  • Establish a common “language” of factors important to decision-making
  • Benchmarking with a checklist of factors to consider before making decisions
  • Visualization of facts and patterns as a catalyst for interactive exploration and discussion among decision-makers (e.g. “paperless” real estate committee meetings)
  • Maintaining an objective record of decision logic for learning and improvement

These are propositions of value, and when applied to a specific company, they may become part of a value proposition!

The Mysterious Origin of New Stores

In 2002 I was on a panel at the Retail Systems Show in Chicago which was a technology showcase for the retail industry.  The panel was focused on analytics and my topic was the use of predictive analytics in real estate planning and site selection.  I had already been at the show for a couple of days and after speaking with many CIOs, CTOs, and merchandising executives it became apparent that there was little interaction between the real estate department and the other areas of the business.

I started my presentation by telling the audience that I had come to the conclusion that “everyone outside of the real estate department thinks that stores just magically appear.” Continue reading